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USING THE GENERALIZED LIKELIHOOD RATIO 

STATISTIC FOR SEQUENTLAL DETECTION 


OF A CHANGE-POINT 


BY D. SIEGMUND'AND E. S. VENKATRAMAN 

Stanford University and Memorial Sloan-Kettering Cancer Center 

We study sequential detection of a change-point using the generalized 
likelihood ratio statistic. For the special case of detecting a change in a 
normal mean with known variance, we give approximations to the average 
run lengths and compare our procedure to standard CUSUM tests and 
combined CUSUM-Shewhart tests. Several examples indicating exten- 
sions to problems involving multiple parameters are discussed. 

1. Introduction. Let x,, x,, . . . be independent observations. We as-
sume that, for some unknown parameter r ,  the random variables x,, . . . , x, 
have probability density function fo, while x,, ,, . . . have probability density 
function f,. The density functions may be completely specified or may contain 
unknown parameters. The unknown parameter r is called the change-point. 
We seek a stopping rule N which allows us to observe the X'S sequentially, 
only rarely stopping the process before the change-point, but stopping it soon 
afterward. The canonical example is an industrial process which is in control 
and should be allowed to continue operating until time r ,  after which it goes 
out of control and should be stopped and reset as soon as possible. One 
formalization of these requirements is in terms of the average run lengths 
Em(N), and sup, E,(N - r lN > r), where E, denotes expectation under the 
hypothesis that the true change-point is r ,  and Em denotes expectation under 
the hypothesis of no change whatever. We require a stopping rule for which 
Em(N) is large, say, greater than a prespecified large constant, and subject to 
this constraint sup E,(N - r lN > r )  is as small as possible. This is still not a 
well-specified problem, since the indicated expectations may depend on un- 
known parameters, and it may not be possible to achieve our goals uniformly 
in those parameters. 

In the special case that fo and f, are completely specified, two very good 
(indeed, optimal with the appropriate definitions of optimality) procedures 
are the Page-Lorden CUSUM test [Page (1954) and Lorden (1971)l and the 
quasi-Bayesian test of Shiryayev (1963) [cf. also Roberts (1966)l. The CUSUM 
test is defined by the stopping rule 

I n \ 

n: max Z log[fl(xi)/f~(xi)I2 a} 
O s k < n  i = k + l  
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In the more complicated case that fo is completely specified but f, 
contains a (one-dimensional) parameter, one frequently uses this same stop- 
ping rule with f, evaluated a t  some nominal value of the unknown parame- 
ter. In the special case that fo is normal with mean 0 and variance 1while fl 
has its mean shifted to 6, this stopping rule becomes 

where S, = x, + ... +x,. 
For the stopping rule of a CUSUM test [in particular, for the special case 

(1.1)1, very accurate approximations have been given for the average run 
lengths. EJN) and sup E,(N - rlN > r )  = Eo(N) [e.g., Siegmund (1975) and 
(1985), Chapter 101. Alternatively a number of authors have used the station- 
ary Markovian structure of the process to give numerical algorithms for 
calculating these quantities [e.g., Brook and Evans (1972)l. 

The stopping rule (1.1) is useful for detecting changes in the mean p from 
p = 0 to values of p for which 6p > 0. If one wants to detect changes to 
either a positive or negative value, one can use the two-sided stopping rule 

A simple renewal argument [e.g., Siegmund (1985), page 281 shows that, for 
r = 0 or and N defined by (1.2), 

Although it is not at  all obvious in this case whether sup, E,(N - rl N > r)  is 
attained at r = 0, one conventionally continues to use the surrogate Eo(N) 
along with EJN) to evaluate such two-sided stopping rules. 

This paper is concerned with the average run lengths of a CUSUM-like 
test using the generalized likelihood ratio statistic to detect a change-point. 
In the simple case of detection of a change in the mean of independent 
normally distributed random variables with known variance, which without 
loss of generality can be assumed equal to 1, the procedure was mentioned by 
Barnard (1959) and amounts to maximizing the expression in (1.1) as a 
function of 6 to obtain a stopping rule of the form 

n: max IS, - S k ( / ( n- k)li2 2 b 
O s k < n  

The same procedure has been suggested by a number of other authors [e.g., 
Basseville (1988) and references given there]. While one can easily write 
down such a procedure for a wide variety of parametric problems (this is 
presumably a reason for its attractiveness); the process does not exhibit the 
same simple Markovian structure as that in (1.1), and there does not seem to 
have been any attempt to evaluate its average run length. 

In'this paper we begin with the problem of a change in a normal mean 
with fixed, known variance and in Sections 2 and 3 give approximations for 
E,(T) and Eo(T). Section 4 contains numerical results designed to show that 
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this procedure is better in some respects than a standard CUSUM test and is 
competitive with the combined Shewhart-CUSUM test of Lucas (1982). It  
turns out that our analysis is substantially more complicated than that 
required to study the average run lengths of a standard CUSUM test. In 
Section 5 we discuss a number of related, more general models for which 
CUSUM tests have not been developed and which, at  least heuristically, can 
be studied by the same methods. These include changes in a normal mean 
when the variance or (and) the initial value of the mean is (are) unknown, 
when the data are multivariate and when they are autocorrelated. Details of 
the proof of our main result are given in the Appendix. 

2. E,(T ). Throughout this section, x,, x ,  ,. . . are independent N(0,l) 
random variables and T is defined by (1.3). We let 4 and denote the 
standard normal density and distribution functions, respectively. We shall 
also need the function v(x) defined by 

For purposes of numerical evaluation it is useful to know the approximation 

where p is a constant whose value is approximately 0.583 [cf. Siegmund 
(1985), Chapter 101. 

The principal result of this paper is the following theorem. 

I n  fact T is asymptotically exponentially distributed with expectation given by 
the right-hand side of (2.2). 

REMARK1. There is some theoretical justification for using, instead of 
(2.2), the asymptotically equivalent approximation 

which is substantially more accurate numerically (see Remark 3 and Sec- 
tion 4). 

REMARK A related result for Brownian motion obtained via the Poisson 2. 
clumping heuristic appears in Aldous [(1989), page 2121. In principle our 
method permits one to give a rigorous proof of this result by careful attention 
to issues of uniformity and passage to a limit. Given the substantial tech- 
nique involved in the proof of Theorem 1,this added layer of detail would be 
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quite complicated. For a similar argument in a substantially simpler context 
see Leadbetter, Lindgren and Rootz6n [(1983), Chapter 121. 

The starting point in our proof of Theorem 1is the following result, which 
can be obtained by the method of Siegmund (1988). 

PROPOSITION -t a in such a way that mo = cb21. Suppose b -t a and m, 
for some fixed 0 < c < a. Then 

PIT I m,} 

= P {  max 

REMARK3. In the derivation of (2.4) the integrals arise as the limits of 
Riemann sums of the form 

m~ 

b4k-2v2(bk-1/2)b-2. 
k = l  


The upper limit of b appearing in the integral in (2.3) results from approxi- 
mating this sum by 

An upper limit of b is also consistent with the corresponding result for 
Brownian motion if we put v(x) = 1for all x. 

REMARK4. Both Theorem 1 and Proposition 1 are concerned with the 
maximum of the random field Zi,, = ISj - Sil/(j - i)'i2, 1I i <j I m. In 
Proposition 1the value of m = m, is of order b2 and the indicated probabil- 
ity goes to 0 exponentially fast. In Theorem 1,m is of order exp(b2/2)/b, and 
the same probability converges to a limit in (0,l). To make the transition 
from small to large m, we must analyze the behavior of ZiSj, 1I i < j I m, 
for values (i, j)  with ( j  - i) I cb2 and ( j  - i) > cb2. It turns out that the 
range ( j  - i) > cb2 makes a negligible contribution as c -t a ,  but showing 
this is where much of the work lies. 

REMARK5. By setting the right-hand side of (2.2) equal to exp(x) and 
solving asymptotically for b as a function of m and x, one can easily 
reformulate the limit theorem for T in the statement of Theorem 1 as a 
double exponential limit in distribution for 
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for suitable sequences a,, b,. As Aldous [(1989), Section A101 points out, this 
reformulation will rarely provide a useful approximation, but i t  may never-
theless be interesting to compare it to the classical one-dimensional result of 
Darling and Erdos (1956). In particular, the integral appearing on the 
right-hand side of (2.2) is present in the final approximation, showing that 
our result is distribution dependent, whereas that of Darling and Erdos is 
not. 

We begin with a comparatively trivial bound. 

LEMMA1. Assume m = t/[b+(b)l,"xv2(x)dxl, and let 0 < E < 1. Then 
for all large b, uniformly in t bounded away from 0, 

P{T > m) I exp[-t(l  - E)] .  
In particular, {T/[ b- l exp(b2/2)], b > lo6) is uniformly integrable. 

PROOF. Let m, = cb2,as above. Then 

rnax 
O s k < m / m o  k m o s i < j < ( k + l ) m o  ( j  - i)1/2 

i 1 ISj - Sil 
= 1- P rnax 

O s i < j < m o  ( j  - illi2 

By Proposition 1we can choose c large enough that 

ISj - Ski m
P max 2 b} i mob+(b)/  xu2(x)dx(1 - E ) ,

O s i < j < m o  ( j  - i )  0 

for all large b. The lemma now follows from the elementary inequality 
1- x I exp(-x). 

PROOFOF THEOREM1. Let m = t/[b+(b)l,"xu2(x) dx] and m, = cb2. By 
Lemma 1we know that 

liminf P{T I m) 2 1- exp(-t) 
and {T/[b-l exp(b2/2)], b > lo6} is uniformly integrable. To complete the 
proof i t  suffices to show 

limsup P{T I m) I 1- exp(-t). 
Obviously, 

P{T I m) 

ISj - Sil 
rnax 

p 6 )  O s k < m / m o  k m o s i < j s ( k + l ) m o  ( j  - i )  

rnax 
O < k < m / m o  k m o ~ i < ( k + l ) m o , ( k + l ) m o ~ j s m( j  - i)1/2 
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Let E > 0. The first term on the right-hand side of (2.6) can be treated as in 
the proof of Lemma 1and shown to have limit superior less than or equal to 
1- exp(-t(l + E ) )  provided c is large enough. Hence, to complete the proof 
it suffices to show that for c large enough the second term is less than s for 
all large b. This is the content of Lemmas 2-9 in the Appendix. 

3. E,(T) .  When there is a change, we are interested in the expected 
delay until its detection, E,(N - r lN > r), which is a function of the two 
variables r and p. To simplify the process of studying this function, it is 
customary to consider Eo(N),which only depends on p. For many one-sided 
stopping rules, for example, for stopping rule (1.2) or (1.3) with the absolute 
values removed, which might be used to detect a change from mean value 0 to 
some positive value, it is easy to see that sup E,(N - r ( N> r )  = Eo(N).It is 
not obvious that this relation remains true for two-sided stopping rules. 
However, since Eo(T) is certainly of interest and is reasonably easy to 
approximate, we consider it as a surrogate for the more complex function 
E,(T - rlT > r). 

Throughout this section x,, x,, ... are independently and normally dis-
tributed with mean p and unit variance. It will be convenient to change our 
notation for the rest of this section and to write P, and E, to denote 
dependence of probability and expectation on the value of p. (Note the 
inconsistency with our previous notation, where a subscript denoted the 
value of r and the dependence on the underlying distribution was sup-
pressed. Now we take r = 0 and the subscript emphasizes dependence on p.) 
Our approximation for E,(T) involves a synthesis of results of Pollak and 
Siegmund (1975), Lai and Siegmund (1979) and Siegmund (1979). [See also 
Siegmund (19851, Chapters 9 and 10.1 

A direct consequence of the ideas in the first two of these papers is that for 
fixed p > 0, as b + m, 

where r0 = inf {n:S ,  > 0). In order to evaluate the second and third terms on 
the right-hand side of (3.0, we suppose that p + 0. According to Siegmund 
(19791, we have 

where p is the constant introduced in (2.1). Also, 

Substitution of (3.2) and (3.3) into (3.1) leads to the approximation 

We do not know a precise mathematical interpretation of approximation 
(3.4). By comparing the derivation of (3.1) with the much more precise 
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b Monte Carlo (2.3) 

3.30 288 k 6 256 
3.45 431 f 9 399 
3.60 685 f 15 638 
3.75 1108 24 1047 
3.90 1876 k 42 1764 
4.05 3244 k 70 3048 
4.20 5651 k 113 5399 

approximations available for the stopping rule (1.1) [e.g., Siegmund (1985), 
Chapter 101, we see that (3.1) cannot be expected to provide a good approxi- 
mation for values of p close to 0, and hence we should not expect (3.4) to 
provide good approximations for p close to 0. Since we have used the small-p 
asymptotics of (3.2) and (3.3), we should not be surprised if it is not especially 
good for large values of p also. Nevertheless, we shall see in the next section 
that (3.4) provides reasonable approximations for an interesting range of 
parameter values. 

4. Numerical examples. The purpose of this section is to give some 
indication of the accuracy of the approximations (2.3) and (3.4) and to show 
that the procedure defined by (1.3) compares favorably with others in the 
literature. The point of the examples is not to demonstrate the superiority of 
(1.31, but only its reasonableness. In the following section we show heuristi- 
cally that similar procedures can be developed for a number of more difficult 
problems, where there are few competitors. 

Table 1compares the results of a 2000-repetition Monte Carlo experiment 
with approximation (2.3) for various values of b. In Table 2 we consider a 
single value of b, chosen to give E,(N) = 400, and compare three different 
procedures. The first is the stopping rule (1.3) (GLR). The second is the 

TABLE2 
Comparison of three stopping rules 

LR CS CSCS 
P b = 3.45 6 = 1, a = 4.83 6 = 1, a = 5, a, = 3.5 



262 D. SIEGMUND AND E. S. VENKATRAMAN 

two-sided version, (1.2), of the standard CUSUM test (CS). Since the CUSUM 
test has been compared unfavorably to the Shewhart chart for detecting large 
changes, the third test is the combined Shewhart-CUSUM (CSCS), studied 
by Lucas (1982). The stopping rule of this test is the minimum of (1.2) and 

For the standard CUSUM test, the entries are obtained from the approxima- 
tion given by Siegmund [(1985), Chapter 101, which is known to be very 
accurate. The combined Shewhart-CUSUM entries are taken from Lucas' 
paper, where they were obtained by numerical calculation. For the general- 
ized likelihood ratio procedure, the entries marked with an asterisk were 
obtained from (2.3) or (3.4). The unmarked entries are the result of a 
2000-repetition Monte Carlo experiment. In those cells where there is no 
analytic approximation, formula (3.2) gives a very poor approximation, as we 
suspected it would. 

The generalized likelihood ratio procedure is better than the standard 
CUSUM test for detection of large and small changes, and slightly inferior for 
detecting changes of the nominal size 6 = 1.There are only minor differences 
between the generalized likelihood ratio test and the combined 
CUSUM-Shewhart test. 

Pollak and Siegmund (1985) have suggested using, as an alterna-
tive measure of the average delay until detection, the limiting value of 
E,(N - r lN > r )  as r -t m. This is smaller than the value of E,(N), although 
the difference is not large. For example, the entry for the CUSUM test in 
Table 2 in the cells for p = 1.5, 1.0 and 0.5 would decrease to about 5.1, 9.2 
and 34, respectively [Pollak and Siegmund (1985, 1986)l. For the likelihood 
ratio test defined by (1.3) the difference is almost completely negligible, 
unless p is close to 0. Consequently, if one uses this criterion to measure 
expected delay, the region where the CUSUM test dominates the likelihood 
ratio test becomes somewhat broader. The modified criterion will not be 
noticeable in the behavior of the combined Shewhart-CUSUM test when p is 
large; when p is small, its effect will be much the same as with the 
unmodified CUSUM test. 

5. Related problems. The problem studied in the preceding sections 
has been widely discussed in the literature. Compared to other stopping 
rules, the structure of (1.3) makes it difficult to analyse; and although it 
seems quite good, it is not overwhelmingly better than the competition. 
However, at least on a heuristic level the same method can be applied to a 
large number of more difficult related problems which do not appear to have 
received a satisfactory treatment previously. In this section we briefly discuss 
a number of examples. 

EXAMPLE1. Suppose the x's are p-variate normal with a known covari- 
ance matrix, which without loss of generality can be taken to be the identity. 
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For detecting a change in the mean vector from 0 to an arbitrary value p z 0, 
the analogues of (1.2) and (1.3) are, respectively 

j :  max s[IIS, - Sill- S ( j  - i)/2] > a )  
O ~ i < j  

and 

The stopping rule (5.1) does not have the relatively simple Markovian 
structure which permits detailed analysis of (1.2). However, one can study 
(5.1) or (5.2) by the method of Theorem 1. For example, as b + m, 

EXAMPLE2. A more interesting case occurs when there are unknown 
nuisance parameters, for example, if the variance a 2  of the x's or the mean 
value pOof x,, . . . , x,, or perhaps both, are unknown. The case of unknown 
p, was discussed by Pollak and Siegmund (1990, who suggested a stopping 
rule of Shiryayev-Roberts form [Shiryayev (1963) and Roberts (1966)1, which 
in the case of known po has been shown [Pollak and Siegmund (1985)l to 
behave similarly to the CUSUM test (1.2). In the formulation of Pollak and 
Siegmund (1991) there is a training sample of size 0 _< r, r r which provides 
an initial estimator of p,. Their method can in principle be used in the case of 
unknown a', although the statistic is quite complicated. The analogue of 
(1.3) is easily obtained in all cases. For p, unknown and a 2= 1it is 

for po = 0 and a2  unknown it is 

(i- si12 > b2] ;(5.4) T2 = inf j :  j > r, , m q  -j log 1-
r,,<k<j [ (j - i ) ~ j x , 2 ]i ] 

and for both p, and a 2  unknown it involves an appropriate combination of 
(5.3) and (5.4). The argument of Theorem 1 suggests that in all cases as 
b + m, E,(Ti) - E,(T), where T is defined by (1.3). To see why this should be 
so, .consider T, defined by (5.3). We put mo = cb2 as before and divide the 
range [0, ml into the intervals [km,, (k + l)m,). For different values of k the 
random fields (iSj/j - Si,  km, I i < j < (k + l)m,) are easily seen by a 
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computation of covariances to be stochastically independent, but not, as in 
Theorem 1, identically distributed. The method of Siegrnund (1988) yields 

P( max liSj/j - Si l / [ i ( j  - i)/j]'I2 
k m o < i < j < ( k + l ) m o  

x v([t/s(t  - s)]'") dsdt.  

Since k ranges from 0 to m/m,, and m is exponentially large compared to 
m,, except for a negligibly small fraction of k-values close to 0 the ratio s/t  
in (5.5) is uniformly close to 1.Hence, for essentially all k ,  the double integral 
in (5.5) essentially equals 

( t  - s ) - ~ v ~ [ ( ~- s ) " ~ ]  dsdt.  
/ , c < s < t < ( k + l ) c  

Substitution of this approximation and some manipulation show that the 
right-hand side of (5.5) asymptotically equals the right-hand side of (2.4). 

One can also consider multivariate generalizations of these examples. 

EXAMPLE3. The preceding examples all exhibit invariance with respect 
to some group of transformations, and hence an adaptation of the 
Shiryayev-Roberts,procedurealong the lines suggested by Pollak and Sieg- 
mund (1985, 1991) is in principle possible, although the required calculations 
can be complicated. A problem for which that method does not seem applica- 
ble is detection of a change in the mean of a first-order autoregressive 
process. Suppose x, = 0 and, for n 2 1, x, - pl{n > r} = p(x,-l - pl{n > r 
+ I}) + E,, where E ~ ,  I. . . are independent N(0, a2 ) ,  pl < 1, and for sim- 
plicity we assume a 2  is known and equals 1. 

If we momentarily also assume that p is known, a straightforward calcula- 
tion shows that the analogue of (1.3), to which it reduces when p = 0, is 

I xi+l - pxi + ( 1  - P ) C { + ~ ( X ~~ x n - 1 )- I 
[ I  + ( j - i - 1)(1- p)2]

'/ 2 > b). 

When p is unknown, (5.6) should be modified by substituting for p its 
maximum likelihood estimator I j i , j  based on j observations when it is as- 
sumed that the change occurs at  r = i. This estimator is given implicitly in 
the solution of a pair of equations which also involve the corresponding 
maximum likelihood estimator fii, of p. As in Example 2, one might also add 
a training sample of size r , ,  to provide a preliminary estimator of p. 

It is easy to see that under P, the process defining stopping rule (5.6) has 
exactly the same distribution as does that defining (1.3) under the assump- 
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tions of Section 2. In view of the heuristic calculation given in Example 2, it 
seems plausible to conjecture that for large j and values of i in the critical 
range close to j, the value of p can be estimated so accurately from the 
overwhelming number of observations prior to the i th that the same result 
holds asymptotically for the P, average run length when p is unknown. 
However, a rigorous or even convincing heuristic analysis of this example 
appears to be much more complicated than the earlier ones. 

It  would be easy to add to this list of examples. The natural setting of 
Siegrnund (1988) is exponential families of distributions, and it appears 
possible to set the theory discussed in this paper at  that level of generality. 
Detecting a change from a known initial value in a one-parameter exponen- 
tial family seems reasonably straightforward, but problems involving nui- 
sance parameters appear to be substantially more complicated. In particular, 
one cannot expect the P, average run length to be asymptotically indepen- 
dent of the value of unknown nuisance parameters, but it should be roughly 
independent over broad ranges of values of the parameters. 

Although the heuristic argument presented above suggests that in a wide 
range of examples, asymptotically the P, average run length does not depend 
on unknown nuisance parameters, the practical significance of this result 
requires two qualifications. The first is merely to emphasize that the conjec- 
tured results, if correct, are asymptotic. We have done extensive simulations 
of stopping rules (5.3) and (5.4). From these results it is clear that E,(T,) is 
virtually equal to E,(T), regardless of the size of the training sample r,, but 
E,(T2) is sensitive to the size of the training sample. Unless b is fairly large it 
can be somewhat smaller than E,(T) unless r, is about 20. For example, for 
b = 3.45 and ro = 0, 10 and 25, Monte Carlo experiments with 2000 repeti- 
tions yielded estimates for E,(T,) of 345, 392 and 400, respectively. The 
second point to keep in mind is that, although we may appear to pay little in 
the P, average run length for lack of knowledge of these nuisance parame- 
ters, we pay heavily in the expected delay after a change. In fact, it is no 
longer meaningful to look only a t  the expected delay under the assumption 
that the change occurs immediately, since the more information we have to 
estimate the unknown nuisance parameter, the faster we can detect a 
change. For the case of an unknown initial value of the mean, our simulations 
show that stopping rule (5.3) compares favorably with the best stopping rules 
studied by Pollak and Siegmund (1991). In the case of unknown variance, the 
average time to detection after a change-point is substantially increased 
when r is small and the change itself is large. One can see that this must 
be true by observing that instead of the leading term of (b/p)2 in (3.41, 
if a change occurs immediately and there is no training sample to esti- 
mate a 2, the leading term in approximating the average delay to detection is 
b2[log(l + 02), where 0 = p / a .  A training sample of about 10 observations 
to provide an initial estimator of a 2  seems to close most of the gap between 
the cases of known and unknown variance. 
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APPENDIX 

The following lemmas provide a suitable upper bound for the second term 
on the right-hand side of (2.6) and hence allow us to complete the proof of 
Theorem 1. 

Let x,, x,, ... and xi, x;, ... be independent N(0, l )  random variables and 
let Si and Si be their partial sums. Let m, b + w such that  mb4(b) + h E 

( 0 , ~ ) .Let c >> 0, m, = cb2, m, = ~ l / ~ r n ,and m, = m:. 

LEMMA2. There exists S(c) -t 0 as  c + w such that, for all large b, 

rnax rnax ( S j  - S , ) / (j - i)'I2 > b 
k i , j  

where the maximum is taken over 0 < k I m/m,, (k - l)m, 4 i < km, and  
k m , I j ~ m .  

PROOF. The maximum over (k - l)m, I i < km,, km, <j I km, + m, 
can be bounded by appealing again to Siegmund (1988). For (i,  j )  such that 
( k - l ) m , ~ i < k m ,  and k m , + m , < j ~ m  we have j - i = j - k m , +  
km, - i ,  and S j  - Si equals the sum of the independent random walks 
S j  - Skmoand Skmo- Si .  Hence in order to complete the proof of Lemma 2 i t  
suffices to show the following result stated as Lemma 3. 

LEMMA3. There exists S(c) -t 0 as  c + w such that, for all large b, 

PROOF. Let A, = {i: 0 < i 5 m,}, A, = {j:  m, <j I m,} and A, = {j:  
m, <j I m}. Then observe that  

( S i  + S i )1 rnax 
O<ismo,ml<jsm ( i  + j )  

( 3 = 1 rnax 

( S i  + S;.) ( S i  + S;.),/,> b ,  I-f-lax < b]. 
~ s A I ,~ € 4( i  + j )  i s A l ,j € A 3  ( i  + j ) l l 2  -

The proof of the lemma follows from Lemmas 4 and 5, which give bounds for 
the probabilities of the two events on the right-hand side of (A.3). 

LEMMA4. There exists a numerical constant K such that, for all large b, 

( S i  + S;.) 
rnax 

1 /2  
I Kb+(b)log(m)exp

O<isrn,,m,<jsm ( i  + j )  
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PROOF.Let B ( t ) be standard Brownian motion. Observe that 


m a x  isi+,a! > b ]  

O < i l m o ,m 2 < j l m  ( i  + J )  

a P( max S i  + Si > bj1I2for some m ,  < j Im 
O<ismo 

rnax B ( t )  > bmkI2 

+/o 
O < t s m o  


bmbl2
P( rnax E d y )~ ( t )
O < t l m o  

X P{ rnax (8;- (bj1I2-
m2<j<m 

The first term equals 2(1 - W b ) )and is clearly small enough. By a simple 
boundary crossing argument for standard Brownian motion [cf. It8 and 
McKean (1965), page 341, we can see that 

If we substitute the right-hand side of equation (A.5) into the integral in 
equation (A.4), we get two terms, the larger of which is given by 

rnax B ( t )  E d y ) l m ( b t 1 1 2  ~ ) t - ~ / ~ + ( ( b t ' / ~y ) / t l / ' )  dt / o b (
O l t l m ,  m2 

m 
a 2 1  (  b  )  ( ( t 1  - y ) / t 1 / 2 ) 4 ( y / m i / 2 )dy d t / m y 2  

m2 - CO 

LEMMA5. The order of magnitude of the probability of the second set on 
the right-hand side of equation (A.3) is bounded as follows: 

( S i  + S k )
p (  max rnax 

O<i<mo,m,<j<m2 ( i  + j )  1 / 2  > O<i<mo,m2<j<m ( i  + j)li2 -

= O ( m ~ ~ 2 b 2 + ( b ) )  log m , ) ,+ ~ ( b + ( b ) m k / ~  

where 4 is the standard normal density. 
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PROOF.Observe that ( i  + j + k + 1)112- ( i  + j)lI2 I( k  + 1)/2(i + j)lI2. 
Let Zij = S i  + SJ.Let A,, A ,  and A ,  be as in Lemma 3. Also let 

A4 = { ( i 1 , j ' ) :i  < i t  I moand j' = j , o r O  < i t  5 moand j  < j '  s m }  
and 

It  will also be convenient to let W,, n = 1,2, . . ., denote a random walk 
with N ( p , 1) increments and write P, when we are concerned with this 
auxiliary random walk, to denote the dependence of probabilities on p. For 
-co < x < m, let ~ ( x )  = inan: n 2 1, W, > x}. This notation will also be in 
force in Lemmas 6-8, which follow. 

We have 

P( max zij 11, > b ,  max ' i j  5 b )  

iEA1, jEAz ( i  f j )  i € A l ,  j € A 3  ( i  + j ) l I2  


xP,{ rnax Wk I -x) P,{ max Wi I -X 
l < k < m o - i  l s l s m - j  

max w1< -x)dx, 
m - j 

where p = -b/2( i  + j)lI2 
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For large b,  by Lemmas 6-8, this last expression is 

= 0 ( b 2 m ; I 2 4 ( b ) )+ ~ ( b m : / ~log m 2 4 ( b ) ) .  

LEMMA6. PO(rO> n )  _< n P 1 l 2for large n .  

PROOF.We can get this by Theorem l a  of Feller [(1972),Chapter 12, 
Section 71, which states 

PO(rO> n )  - ( ~ n ) - ' " ~ .  

LEMMA7. There exists k > 0 such that, for any p > 0,  
1/2 + kn-1/2P-,{max,, ,,,W, < 01 5 2 P 

for all n .  

PROOF. Observe that 

P-,( max W,< 0 )  = P-,(rO = m)  + P-,(n < r ,  < m ) .  
Isi s n 

From Siegmund [(1985), page 175-1761 we see that P-,(rO = m)  = 

2l/' p [ ~ ( 2 p ) ] ~ / ~I 21/2p.For the other probability we will use the likelihood 
ratio dP-,/dP, to obtain 

4 P,(n < ro < m ) .  

Now Lemma 6 yields the result. Ci 

LEMMA8. Let p = b/2( i  + j)lI2. For all large b ,  

i m e x p ( - 2 p x ) ~ - , (  max W, I -x  
l s n < m - r n ,  

where 0 < i r m,, m ,  r j I m ,  and m,, m,, m ,  and m are as defined before. 

PROOF. Observe that 

max Wk I - X  =P-,{r- ,1 = co} + P-,{m - m ,  < r-, < 
P-,( 1 5 i s m - m 2  

By Lemma 19 in Siegrnund (1992), we know 
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Hence it is enough to prove 

for all large b. We will show this using the likelihood ratio dP-,/dPo as 
follows: 

p-l k m e x P ( - 2 p x ) ~ - , { m  - m2 < r-,  < to} dx 

Ip-2 exp(-p2(m - m2)/2) -f 0 

as b + co uniformly in (i, j). 
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